
OSCILLATING FLOW IN A TUBE WITH FORMATION OF A BOUNDARY 

LAYER OF SOLVENT* 
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It is shown that the presence of a boundary layer of solvent can lead to a sharp in- 
crease in the velocity of an oscillating flow of viscoelastic fluid, 

Interest in oscillating flows has greatly increased in recent years. This is due to 
their diverse practical applications [i]. In particular, they are widely used in experi- 
mental methods of determining the parameters of models of viscoelastic fluids [2, 3], 

Oscillating flows of an isotropic Newtonian fluid [4, 5] a non-Newtonian inelastic flu- 
id [6, 7], and a viscoelastic fluid [2, 3] have now been theoretically analyzed, In the case 
of a flow of emulsions, suspensions, andsome polymer solutions a layer with properties simi- 
lar to those of the solvent can be formed in the immediate vicinity of a pipe step [8, 9], 
St has been shown experimentally [i0] that an oscillating flow promotes the formation of such 
a layer. In the wall region a viscosity considerably less than the cited viscosity can be 
obtained as a result of thixotropic effects, 

The aim of the present work was to quantitatively estimate the effect of such a boundary 
layer on the flow velocity profile. 

We assume that a periodic pressure drop in a round tube of radius R causes a laminar 
flow of a viscoelastic fluid whose behavior is characterized by the Oldroyd model [Ii] 

= ~o (~ + ~2~i --:~,T: (i) 
This model is applicable to emulsions and some polymer solutions [12], 

In the wall region there is formed a layer of Newtonian fluid of thickness 6 << R, which 
may be a disperse medium (suspension, emulsion) or the solvent of a polymer solution, For 
such a layer we can use the relation 

w=~?. (2) 

Using the complex representation of a periodic process we can write the following equa- 
tions for the pressure gradient, velocity, and deformation stress sufficiently far from the 
tube entrance [13] 

P = Po exp  ( i~t) ,  I~" = w exp ( i~t) ,  ~ = z o exp  (i~/).  ( 3 )  

The amplitudes w, po, and xo in the most general case are complex numbers containing an ap~ 
propriate phase angle. 

The subscript i denotes quantities relating to the boundary layer and the subscript 2 
denotes those for the main fluid. Substitution of Eqs. (i)and (2)in the equation ofmotion in 
cylindrical coordinates 

a~z aP I a 
p - -  - - -  + - -  - -  (r~,,) (4) 

at az  r ar  

after appropriate algebra leads to the system 

d2w,+ I dw, +82=i_ p0~2 
dr 2 r dr icopt 

(5) 
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d2w~ q_ 1 dw2 -I- ~.2wz = p~~163 , (6)  
dr 2 r dr iop,z 

where the parameters B and % are given by the expressions 

6 ~ = ioPi , s : ~p~(1 + io~ 0 (7) 

(5) and (6) are valid for a number of other models of a viscoelastic fluid, Equations 
For %2 we obtain the corresponding expressions given in [3], 

The substitution w = v + po/imp converts Eqs. (5) and (6) 
Bessel equations: 

to a system of differential 

d2v t I dr, 
dr" + - -  - -  + [F-'o ~ = O, r dr (8) 

d~v*" -t- 1 dr.,. _[_ ~.~v~. ~ O. (9)  
dr 2 r dr 

Their general solutions have the form 

vl = A~4 ( 6 0  + BiYo (Or), (10) 
v~ = A,4 (~0 + B~Yo ( ~ ) ,  ( l l  ) 

where Jo and Yo are zero-order Bessel functions of the first and second kinds, respectively, 
Coefficients At, BI, A2, and B2 are given by the following boundary conditions; 

a) r = R ,  w i  ( r ) =  0;  c )  r = 0 ,  w 2 - -  constant;  

b)  r = R - -  8 ,  ws  (r)  = w6; d)  r = R - -  6 ,  w~ (r)  = w6,  

(12) 

where w~ is the velocity amplitude at the boundary of the boundary layer and the main fluid. 

Boundary condition c) requires that B2 = 0, and boundary condition d) leads to the 
equality 

A~= Wa P0 (13) 
Jo[s iop~Jo[s 

Then the distribution of the velocity amplitude of the main fluid across the tube is given 
by the equation 

Boundary conditions 

w2----p_Ao_ { 1 Jo(;~r) } wsJo(~r) (14) 
icop~ Jo [~ (R - -  O ]  + Jo [~ (R - -  8)1 

a) and b) give formulas for coefficients Ax and Bx: 

A~ = wai(~176 (6R) q- Po {1"o [6 (R - -  8)1 - -  }to (6R) }  , (15) 
i(op~ {Jo [6 (R - -  6)1 Yo (6R) - -  Yo [6 (R - -  ~)1 JQ(6R)} 

Bi Po Jo(6R) {waioPiYo(6R) q-Po{Yo[6 ( R - -  6)] - -  Yo(6R)}} (16) 
iop,ro (6R) iop~ro(6R) {JoI6(R--6)IYo(6R)--Yo[6(R--O]Jo(6R)} 

The velocity amplitude profile in the boundary layer is 

wi = Po + AtJo(6r) + BiYo (6r). (17) 
iopl 

Differentiating (14) and (17) we obtain the velocity gradients for the two layers: 
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dW% = { 

dr 

dlV~ 
dr 

poLJ, (Zr) 
ir [~, (R -- 6)1 

~_sZJt (Zr) ! exp (loot), 
Jo [~, (R - -  6)1 J 

. . . . .  exp (io~t) (A,~J~ ([}r) + B,~Yt (~r)}. 

(is) 

(19) 

From the condition for equality of stress at the boundary of the two regions 

( dW, ) (20) 
1 + io~ki \ - -~7  ~=R-6 

we obtain the velocity w8 required for calculation of the velocity profile from Eqs. (14) 
and (17) : 

w6 = C/ D; (21) 

the values of C and D are given in the Appendix. 

Tables [14, 15] give the values of the Bessel functions correct to the eighth decimal 
place for the first quadrant of the complex region. This accuracy is particularly important 
in calculation of the difference 

Jo t~ (R-- 6)] Yo (~R) -- Yo [8 (R -- 8)] 4 r 
in expressions C and D. 

Functions Jo(Ir) and Jx(lr) are expressed with the aid of tabulated real (Uo~ ul) and 
imaginary (Vo, vl) parts 

J (%r) ---- J (r, exp hp) ---- u (}, r q- is (7, r (22) 

where r and ~ are found from the equations in [3]. 

Functions Jo(Sr) and J~(Sr) are calculated with the aid of tabulated functions ber and 
bei [16] or tables [14] from the equations: 

Jo (~r) ---- uo (r_ ~/4) -- ioo (r, ~/4), (23) 

Jt (~r) = - -  ut (r, n/4) q- iv, (r, n/4), (24) 

and f u n c t i o n s  Yo(r  and Yx(Sr)  f rom 

Yo (~r) = {Vo (r, =/4) + 2v 0 (~, n/4)} - -  i {V0(~, ~/4) - -  2u,(~, n/4)}, (25) 

Y, (~r)= {--V, (7, n/4)--2v, (r, ~/4)} + i{Y, (~, ~/4) - -  2u, ~,  n/4)}, (26) 

where  u and v a r e  t a k e n  f rom [ 1 4 ] ,  and U and V f rom [ 1 5 ] .  

In  Eqs.  ( 2 3 ) - ( 2 6 )  ~ = r]/-~-pi/lx. 
I f  t h e r e  i s  no bounda ry  l a y e r  (6 = 0,  w 6 = 0 ) ,  t hen  (14) r e d u c e s  to  t he  form g i v e n  i n  

[2] and [ 3 ] .  

Calculations made from Eqs. (14) and (17) showed that the presence of a boundary layer 
can lead to a sharp increase in the velocity in the wall region even if the layer is very 
thin. Directly at the wall the effect is probably manifested as wall slip, and is more pro- 
nounced than for steady-state laminar flow of the same fluid, This means that an oscillat~ 
ing flow can provide the basis of a very sensitive experimental technique for determination 
of the existence of a boundary layer. 

Increase in layer thickness enhances the "slip" effect, which leads to an increase in 
the mean displacement at the particular pressure gradient, If the mean displacement is kept 
constant the energy spent on generation of the oscillating flow will be reduced, 

Figure 1 illustrates what we have said above for the following conditions; %x = 0.456 
sec, ~a = 0.3 sec, ~ = 5 sec -x, pl = pa = 1125 kg/m 3, Bo = 0.1243 Pa,secp B = 10 -2 paosec, 
R = 0.012 m. 

In [i0] boundary layers of thickness 2.5.10-4-5"i0 -4 m were observed in an oscillating 
flow of suspension. 
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Velocity amplitude profile for different boundary layer thicknesses: i) 
6 = 0; 2) 0.00012 m; 3) 0.00024 m. 

Fig. 2. Comparison of experimental data of [7] with theoretical solutions of same 
authors. Aqueous solution of carboxymethylcellulose with concentration 0.5% (a) 
and 1% (b) and oscillation frequency i Hz. 

Figure 1 shows that the effect of the boundary layer becomes negligible in the axial re- 
gion of the tube. This confirms the earlier recommendation [3] that the velocity profiles in 
the central part of the tube should be used, since they are fairly sensitive and are not sub- 
ject to the wall effect. 

The formation of a boundary layer would account for the much higher velocities observed 
in the wall region for an oscillating flow of aqueous solutions of carboxymethylcellulose 
[7] in comparison with the theoretical values for an isotropic medium (Fig. 2), Such solu- 
tions showed other anomalies, such as drag reduction [17], accelerated runoff of the film 
[18], and other features which could be attributed to the presence of a boundary layer of 
solvent. 

Failure to consider the actual velocity profile can lead to erroneous estimates of the 
effect of oscillation of the fluid on heat and mass transfer. 

APPENDIX 

C = P0YI [8 (R -- 6)] __ p0Ji [X (R , 6)] __ 

I~Yo (PR) ~Jo P, (R - -  6)1 

no {A [P (R - -  6)1 Vo (13R) - -  r~ [p( R - -  ~1 Jo (PR)} {Vo [8 (~ - - ,~) ] - - ro (pR)) 
~Yo (~R~ {4 [~ (e -- ~)] vo (~R) -- Vo [~ (R -- 8)] 4 (~R)) 

D = ~~ A- icon,2) J~ [k (R - -  6)1 

0 + ~o,~,,) Jo [~, (R - 6)1 

~1~ {v~ [13 (~ - ~)1 Jo (pR) - J, [p (e - 6)1 yo (1~,~)} + 
Jo [[3 (R -- 6)] Yo (IBR) - -  Yo [[3 (R - -  6)] Jo (~R) 

NOTATION 

m, frequency of oscillating flow, sec-*; p, fluid density, kg/mS; X~, relaxation 
time, sec; X2, delay, sec; uo,viscosity at infinitely low deformation rate, Pa.sec; r, shear 
stress, Pa; y, deformation rate, sec-~; R, tube radius, m; 6, thickness of boundary layer, 
m; p, pressure gradient, Pa/m; W, fluid velocity, m/sec; t, time, sec; m, modulus of veloc- 
ity amplitude, m/sec. 
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THERMAL CONDUCTIVITY OF FREON-218 

V. P. Baryshev, S. D. Artamonov, 
and V. Z. Geller 

t~C 536,22 

The thermal conductivity of Freon-218 is investigated experimentally in a wide re- 
gion of the parameters. Reference tables of thermal conductivity are compiled, 

Freon-218 (C3F8) is a promising agent for refrigeration and especially for cryogenic 
engineering, but its application is limited by the absence of data on the thermophysical 
properties in the region of the parameters required in practice. Earlier we [i] determined 
the thermal conductivity of Freon-218 at low temperatures (from 113 to 297~ The aim of 
the present report is an investigation of the thermal conductivity of Freon-218 at moderate 
and moderately high temperatures (up to 430~ and pressures up to 60 MPa, as well as the 
development of reference tables of X. 

The thermal conductivity was measured by the hot-filament method using a cell whose con- 
struction is described in [2]. In all the tests X was determined at different temperature 
drops in the layer, with the Rayleigh numbers not exceeding 1500. The region of the maxima 
(at 0.6 < m < 1.4 and T < 1.15) was not investigated, The experimental results are presented 
in Table i. 

In the treatment of the measurement results we analyzed the equations 

n si 

= ( 1 )  
i=I f=0 

si 

: ~ ai~ol'~ . (2)  in (~/~'t) ~ i j 
i ~ l  i=O 
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